On the Extendability of Linear Codes

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the (2,1)-extendability of ternary linear codes

We show that every [n, k, d]3 code with diversity (Φ0, Φ1), 3 ≤ k ≤ 5, gcd(d, 3) = 1, is (2, 1)-extendable except for the case (Φ0, Φ1) = (40, 36) for k = 5, and that an [n, 5, d]3 code with diversity (40, 36), gcd(d, 3) = 1, is (2, 1)-extendable if Ad ≤ 50. Geometric conditions for the (2, 1)-extendability of not necessarily extendable [n, k, d]3 codes for k = 5, 6 are also given.

متن کامل

Extendability of linear codes over Fq

For an [n, k, d]q code C, we define a mapping wC from PG(k − 1, q) to the set of weights of C via a generator matrix of C. We give a geometric aspect derived from wC to investigate the extendability of linear codes. We survey known extension theorems and some recent results.

متن کامل

Some improvements to the extendability of ternary linear codes

For a ternary [n, k, d] code C with d ≡ 1 or 2 (mod 3), k 3, the diversity (Φ0,Φ1) given by Φ0 = 1 2 ∑ 3|i, i =0 Ai, Φ1 = 1 2 ∑ i ≡0, d (mod 3) Ai is important to know about the extendability of C, where Ai stands for the number of codewords with weight i. As a continuation of [T. Maruta, Extendability of ternary linear codes, Des. Codes Cryptogr. 35 (2005) 175–190], we prove all the conjecture...

متن کامل

On the extendability of particular classes of constant dimension codes

In classical coding theory, different types of extendability results of codes are known. A classical example is the result stating that every (4, q − 1, 3)-code over an alphabet of order q is extendable to a (4, q, 3)-code. A constant dimension subspace code is a set of (k− 1)-spaces in the projective space PG(n− 1, q), which pairwise intersect in subspaces of dimension upper bounded by a speci...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Finite Fields and Their Applications

سال: 2001

ISSN: 1071-5797

DOI: 10.1006/ffta.2001.0296